UNIT 1

What is Biology?

THEMES IN THE STUDY OF BIOLOGY
1.1 Life’s levels of organization define the scope of biology
 These levels represent a hierarchy
 Life’s Hierarchy of Organization
 The upper tier is a global perspective of life
 ___________________ : all the environments of Earth that support life
 ___________________ : All the living and nonliving components of a
 particular environment
 ___________________ : All the living organisms in an ecosystem
 ___________________ : an interacting group of individuals of one species
 ___________________ : An individual living entity
 The middle tier is characterized by the organism, which is composed of
 Organism → Organ systems →
 Life emerges at the level of the cell, the lower tier, which is composed of
 → Organelles →
 Emergent Property

 The combination of the parts that form a more complex organization is called a _____

1.2 Living Organisms Interact with their Environments
 Producers –

 Consumers

 To be successful, an ecosystem must accomplish two things
 Recycle chemicals necessary for life
 Move energy through the ecosystem

1.3 Cells are the structural and functional units of life
 Cells perform all functions necessary for life
 By studying a biological structure, you determine what it does and how it works
1.4 The unity of life: All forms of life have common features

__________ is the genetic (hereditary) material of all cells

A ___________ is a discrete unit of DNA

The chemical structure of DNA accounts for its function

The diversity of life results from differences in DNA structure from individual to individual

Other common properties of organisms:

1.5 The diversity of life can be arranged into three domains

Scientists have identified about 1.8 million species (particular types of organisms)

Taxonomy

Three domains are the most overarching groups:

- **Domain ______________________**, unicellular prokaryotes (cells that lack a nucleus)
- **Domain ______________________**, unicellular prokaryotes
- **Domain ______________________**, unicellular and multicellular eukaryotes (cells with a nucleus), including protists, plants, animals, and fungi

1.6 Evolution explains the unity and diversity of life

Charles Darwin proposed the theory of evolution by ______________________

Species evolved from ancestors through "______________________________"

The product of natural selection is ______________________

THE PROCESS OF SCIENCE

1.7 Scientists use two main approaches to learn about nature

Discovery science

Hypothesis-based science

Hypothesis:
1.8 With hypothesis-based science, we pose and test hypotheses. Hypothesis-based science applies the five steps of the scientific method:

1. ______________________________ from others or results of earlier tests
2. ______________________________ about unclear aspects of the observations:
 How? Why? When?
3. ______________________________ or tentative explanations of a phenomenon
 Must be ______________________
 Must be ______________________
4. Predictions developed by the use of _____________________ (if...then)
5. ________ of predictions to determine if the predictions are supported or falsified.

A Case Study from Everyday Life
Following the scientific method to discover why a flashlight doesn't work
Using deductive reasoning to test alternative hypotheses
If a hypothesis is correct, and we test it, then we can expect a particular outcome

A Case Study of Hypothesis-Based Science
Another hypothesis: Mimicry helps protect nonpoisonous king snakes from predators where poisonous coral snakes also live
The hypothesis predicts that predators learn to avoid the warning coloration of coral snakes
The experiment has a ______________________________ using brown artificial snakes for comparison
The ______________________________ is artificial snakes with the red, black, and yellow ring pattern of king snakes

THE CHEMICAL BASIS OF LIFE
ELEMENTS, ATOMS, AND MOLECULES
2.1 Living organisms are composed of about 25 chemical elements
 Elements

2.3 Elements can combine to form compounds
 Compounds

 Different arrangements of the atoms of elements determine the unique properties of each compound
 The smallest unit of an element is an ________________
2.4 Atoms consist of protons, neutrons, and electrons
Subatomic particles

___________ and _____________ occupy the central region (nucleus) of an atom
A proton has a

A neutron is

Electrons surround the nucleus
An electron has a

How do you calculate the amount of subatomic particles in the atom?

Atomic number

___ protons in nucleus of an atom (establishes identity of the atom)

Atomic mass

___ protons plus ___ neutrons in _________ of an atom

How can we determine the number of neutrons in an atom?

Do all carbon atoms have the same number of protons?
Do all carbon atoms have the same number of neutrons?

Isotopes

2.6 Electron arrangement determines the chemical properties of an atom
Electrons in an atom are arranged in electron shells, which may contain different numbers of electrons
Chemical bonds

Two major types of chemical bonds

2.7 Ionic bonds are attractions between ions of opposite charge

2.8 Covalent bonds join atoms into molecules through electron sharing
Covalently bonded atoms share one or more pairs of outer shell electrons, forming a
Covalent bonds can be represented in various ways
2.9 Unequal electron sharing creates polar molecules
A molecule whose covalently bonded atoms share electrons equally is _______________
A molecule whose covalently bonded atoms share electrons unequally is _______________
2.10 Hydrogen bonds are weak bonds important in the chemistry of life

Hydrogen bonding occurs in many biologically important compounds
Water, DNA, and Proteins

WATER'S LIFE-SUPPORTING PROPERTIES
2.11 Hydrogen bonds make liquid water cohesive
 Cohesion is

 Surface tension

 Adhesion is

2.12 Water's hydrogen bonds moderate temperature
 It takes a large amount of energy to change the temperature of water
 Water also moderates temperature by evaporative cooling
2.14 Water is the solvent of life

What is the difference between a solution, solvent, and solute?

2.15 The chemistry of life is sensitive to acidic and basic conditions
 What is an acid and a base?
 Acid is a compound that

 Base is a compound that

Therefore the **pH scale** measures the

THE MOLECULES OF CELLS
INTRODUCTION TO ORGANIC COMPOUNDS
3.1 Life's molecular diversity is based on the properties of carbon
 ____________________________________ contain at least one carbon atom
 ____________________________________ are composed of only hydrogen and carbon
3.2 Functional groups help determine the properties of organic compounds
 Functional groups are groups of atoms attached to the carbon skeleton of molecules
 Usually participate in chemical reactions
 Give organic molecules their particular properties
Six main functional groups are important in the chemistry of life:
3.3 Cells make a huge number of large molecules from a small set of small molecules
Four main classes of biological macromolecules

Cells make the most of their large molecules by joining smaller organic monomers into chains called ________________________________
____________________ are usually linked by ________________________________

Polymers are broken down to monomers by the reverse process, _____________________

Now let’s look at the four major organic molecules needed for life.
CARBOHYDRATES
3.4 Monosaccharides are the simplest carbohydrates
 Monosaccharides

3.5 Cells link two single sugars to form disaccharides
 Disaccharide

3.7 Polysaccharides are long chains of sugar units
 Polysaccharides

LIPIDS
3.8 Fats are lipids that are mostly energy-storage molecules
 Lipids are

 Linked by nonpolar covalent bonds
 ________________________________ (water-fearing)

3.9 Phospholipids and steroids are lipids with a variety of functions
 Phospholipids

 Are a major component of cell membranes
 Steroids
PROTEINS
3.11 Proteins are essential to the structures and activities of life
A protein is
The structure of the protein determines its function
The seven major classes of protein are
________________________: hair, cell cytoskeleton
________________________: producers of movement in muscle and other cells
________________________: sources of amino acids, such as egg white
________________________: antibodies, membrane proteins
________________________: carriers of molecules such as hemoglobin, membrane proteins
________________________: hormones, membrane proteins
________________________: regulators of the speed biochemical reactions
3.13 A protein's specific shape determines its function

3.14 A protein's shape depends on four levels of structure

NUCLEIC ACIDS
3.16 Nucleic acids are information-rich polymers of nucleotides
There are two types of nucleic acid-

Nucleic acids are

DNA vs RNA
 DNA is a
 DNA uses a
 DNA is composed of

Specific sequences of DNA make up genes that program the amino acid sequences of proteins
RNA is
RNA uses a
RNA is composed of
RNA copies the
A TOUR OF THE CELL
Why is it important to know about cells?

Cell theory

1. [Schleiden & Schwann]
2. [Virchow]

INTRODUCTION TO THE CELL
4.2 Most cells are microscopic
4.3 Prokaryotic cells are structurally simpler than eukaryotic cells
 There are two kinds of cells

 All cells share some common features

Prokaryotic cells
Do not have a membrane-bound ______________________

DNA is coiled into a ______________________ region in the cytoplasm

_______________ includes ribosomes

Complex ______________________________

Capsule, __________, prokaryotic ______________________ in some forms

4.4 Eukaryotic cells are partitioned into functional compartments

 Distinguished by a true __________________________

 Contain both membranous and nonmembranous ______________________________

 So let’s look at an animal and plant cell

Animal cells

 Are bounded by the ________________________________ alone

 Lack a ________________________________

 Contain ___________________________ and ____________________________

 Often have __________________________

Plant cells

 Are bounded by both a plasma membrane and a rigid cellulose __________________
CELL STRUCTURES

4.6 The nucleus is the cell's genetic control center
 The nucleus contains the cell’s _______________
 Controls cellular activities by directing protein synthesis
 The nucleus is separated from the cytoplasm by the _______________________________
 _____________________________ in the envelope control flow of materials in and out
 Ribosomes are synthesized in the _______________________________

4.7 Ribosomes make proteins for use in the cell and export

4.8 Many cell organelles are connected through the endomembrane system
 The endomembrane system is a collection of _______________________________
 Work together in the synthesis, storage, and export of molecules

4.9 The endoplasmic reticulum
 Broken into two parts
 Smooth ER lacks attached _______________________________
 Rough ER is studded with _______________________________

4.10 The Golgi apparatus finishes, sorts, and ships cell products
 The Golgi apparatus consists of stacks of flattened membranous sacs

4.11 Lysosomes are digestive compartments within a cell
 Lysosomes are sacs of enzymes that form from the Golgi apparatus
4.14 Mitochondria harvest chemical energy from food
Mitochondria are found in nearly all eukaryotic cells

4.15 Chloroplasts convert solar energy to chemical energy
Chloroplasts are found in plants and some protists

4.16 Mitochondria and chloroplasts evolved by endosymbiosis

THE WORKING CELL
MEMBRANE STRUCTURE AND FUNCTION
5.1 Membranes are a fluid mosaic of phospholipids and proteins
Membranes are commonly described as a ________________
The proteins are actively floating about in a ________________
Phospholipids
Have a

Bilayer embedded with ______________________
Proteins
The proteins embedded within the bilayer have a variety of functions
Integrins, Enzymes, Receptors (signal transduction), and Transporter
Because membranes allow some substances

5.3 Passive transport is diffusion across a membrane with no energy investment
Diffusion is a process

Particles move from an area of more concentrated particles to an area where they are less concentrated
This means that particles diffuse down their __________________________

5.4 Osmosis is the diffusion of water across a membrane
5.5 Water balance between cells and their surroundings is crucial to organisms

Tonicity is a term

Tonicity

______________________ indicates that the concentration of a solute is the same on both sides

______________________ indicates that the concentration of solute is higher outside the cell

______________________ indicates a higher concentration of solute inside the cell

Osmoregulation

This process prevents excessive uptake or excessive loss of water

5.6 Transport proteins may facilitate diffusion across membranes

5.8 Cells expend energy in the active transport of a solute against its concentration gradient

It requires ________________

The mechanism alters the shape of the membrane protein through phosphorylation using ATP

5.9 Exocytosis and endocytosis transport large molecules across membranes

A cell uses two mechanisms for moving large molecules across membranes

Exocytosis is used to export

Endocytosis is used to import

In both cases, material to be transported is packaged within a vesicle that fuses with the membrane

5.9 Exocytosis and endocytosis transport large molecules across membranes